On this page
- Getting to know the SimpleFOClibrary code
- Step 0. Include the library
- Step 1. Position sensor setup
- Step 2. Driver setup
- Step 3. Current sense setup
- Step 4. Motor setup
- Step 5. FOC routine and real-time motion control
- Step 6. Monitoring
- Step 7. Debugging output
- Step 8. Commander Interface
- Step 9. Getting started step by step guide
- 🎨 Full Arduino code of the example
- Library source code
Getting to know the SimpleFOClibrary code
Once you have your SimpleFOClibrary installed and you have all the necessary hardware, we can finally start to get familiar with the Arduino code that will run your motor. Here are all the most important steps when writing the code!
Step 0. Include the library
Let’s start by including the library header file:
#include <SimpleFOC.h>
Step 1. Position sensor setup
First step when writing the code is initializing and configuring the position sensor. The library supports these position sensors:
- Encoders: Optical, Capacitive, Magnetic encoders (ABI)
- Magnetic sensors: SPI, I2C, Analog or PWM
- Hall sensors: 3xHall sensing, Magnetic sensor (UVW interface)
- Generic sensors NEW📢: A simplified sensor implementation for adding custom sensors
Choose a position sensor to use with this example:
Encoder Magnetic sensor Hall sensors
#include <SimpleFOC.h>
// Encoder(pin_A, pin_B, PPR)
Encoder sensor = Encoder(2, 3, 2048);
// channel A and B callbacks
void doA(){sensor.handleA();}
void doB(){sensor.handleB();}
void setup() {
// initialize encoder hardware
sensor.init();
// hardware interrupt enable
sensor.enableInterrupts(doA, doB);
}
void loop() {
}
Encoders as position sensors are implemented in the class Encoder
and are defined by its:
A
andB
channel pin numbers:2
and3
- Encoder
PPR
(impulses per revolution number):2048
Index
pin number (optional)
Initialize the hardware pins by running sensor.init()
.
For full documentation of the setup and all configuration parameters please visit the position sensors docs .
Step 2. Driver setup
After setting up the position sensor we proceed to initializing and configuring the driver. The library supports BLDC drivers handled by BLDCDriver3PWM
and BLDCDriver6PWM
classes as well as stepper drivers handled by the StepperDriver2PWM
and StepperDriver4PWM
classes.
BLDC Driver - 3PWM Stepper Driver 4PWM
BLDCDriver3PWM
class is instantiated by providing:
- pwm pins for phases
A
,B
andC
enable
pin number (optional)
For example:
#include <SimpleFOC.h>
// BLDCDriver3PWM( pin_pwmA, pin_pwmB, pin_pwmC, enable (optional))
BLDCDriver3PWM driver = BLDCDriver3PWM(9, 5, 6, 8);
// instantiate sensor
void setup() {
// init sensor
// pwm frequency to be used [Hz]
driver.pwm_frequency = 20000;
// power supply voltage [V]
driver.voltage_power_supply = 12;
// Max DC voltage allowed - default voltage_power_supply
driver.voltage_limit = 12;
// driver init
driver.init();
}
void loop() {
}
For full documentation of the setup and all configuration parameters please visit the driver docs .
Step 3. Current sense setup
After the position sensor and the driver we can proceed to initializing and configuring the current sense, if available of course. If current sense is not available you can skip this step. The library supports two types of current sense architecture:
- in-line current sensing
InlineCurrentSense
. - low-side current sensing
LowsideCurrentSense
.
In-line current sensing Low side current sensing
InlineCurrentSense
class is instantiated by providing:
- shunt resistor value
shunt_resistance
- amplifier gain
gain
- analog pin numbers for phases
A
,B
(and optionallyC
)
For example:
#include <SimpleFOC.h>
// instantiate driver
// instantiate sensor
// InlineCurrentSense(shunt_resistance, gain, adc_a, adc_b)
InlineCurrentSense current_sense = InlineCurrentSense(0.01, 50, A0, A2);
void setup() {
// init sensor
// init driver
// link the driver with the current sense
current_sense.linkDriver(&driver);
// init current sense
current_sense.init();
}
void loop() {
}
For full documentation of the setup and all configuration parameters please visit the current sense docs .
Step 4. Motor setup
After the position sensor and the driver we proceed to initializing and configuring the motor. The library supports BLDC motors handled by the BLDCMotor
class as well as stepper motors handled by the StepperMotor
class. Both classes are instantiated by providing just the pole_pairs
number of the motor and optionally the motors´ phase resistance and the KV rating.
In this example we will use BLDC motor:
#include <SimpleFOC.h>
// BLDCMotor( pole_pairs , ( phase_resistance, KV_rating optional) )
BLDCMotor motor = BLDCMotor(11, 9.75);
// instantiate driver
// instantiate sensor
// instantiate current sensor
void setup() {
// init sensor
// link the motor to the sensor
motor.linkSensor(&sensor);
// init driver
// link the motor to the driver
motor.linkDriver(&driver);
// link driver and the current sense
// link the motor to current sense
motor.linkCurrentSense(¤t_sese);
// set control loop type to be used
motor.controller = MotionControlType::velocity;
// initialize motor
motor.init();
// init current sense
}
void loop() {
}
After the instance of the motor motor
has been created we need to link the motor with the sensor motor.linkSensor()
and link the motor class to the driver it is connected to motor.linkDriver()
.
The next step is the configuration step, for the sake of this example we will configure only the motion control loop we will be using:
// set control loop type to be used
motor.controller = MotionControlType::velocity;
And to finish the motor
setup we run the motor.init()
function.
For full documentation of the setup and all configuration parameters please visit the motor docs .
Step 5. FOC routine and real-time motion control
When we have initialized the position sensor, driver and the motor, and before we can run the FOC algorithm, we need to align the motor and sensor. This is done by calling motor.initFOC()
. After this step we have a functional position sensor, we have configured the motor and our FOC algorithm knows how to set the appropriate voltages based on position sensor measurements.
For the real-time routine of the FOC algorithm we need to add the motor.loopFOC()
and motor.move(target)
functions in the Arduino loop()
.
motor.loopFOC()
: FOC algorithm execution - should be executed as fast as possible> 1kHz
motor.move(target)
: motion control routine - depends on themotor.controller
parameter
Here is how it looks in code:
#include <SimpleFOC.h>
// instantiate motor
// instantiate driver
// instantiate sensor
// instantiate current sensor
void setup() {
// init sensor
// link motor and sensor
// init driver
// link motor and driver
// link driver and the current sense
// link motor and current sense
// configure motor
// init motor
// init current sense
// align encoder and start FOC
motor.initFOC();
}
void loop() {
// FOC algorithm function
motor.loopFOC();
// velocity control loop function
// setting the target velocity to 2rad/s
motor.move(2);
}
For full documentation of the setup and all configuration parameters for BLDC motors please visit the BLDCMotor docs , and for Stepper motors please visit the StepperMotor docs
Step 6. Monitoring
BLDCMotor
and StepperMotor
classes provide monitoring functionality. For enabling the monitoring feature make sure you call motor.useMonitoring()
with the Serial
port instance you want to output to. It uses Serial
class to output motor initialization status during the motor.init()
function, as well as in motor.initFOC()
function.
If you are interested in outputting motors state variables in real-time (even though it will impact the performance - writing the Serial port is slow!) add the motor.monitor()
function call to the Arduino loop()
function.
#include <SimpleFOC.h>
// instantiate motor
// instantiate driver
// instantiate senor
void setup() {
// init the serial port
Serial.begin(115200);
// init sensor
// link motor and sensor
// init driver
// link motor and driver
// link driver and the current sense
// init current sense
// link motor and current sense
// use monitoring with the BLDCMotor
Serial.begin(115200);
// monitoring port
motor.useMonitoring(Serial);
// configure motor
// init motor
// init current sense
// align encoder and start FOC
}
void loop() {
// FOC execution
// motion control loop
// monitoring function outputting motor variables to the serial terminal
motor.monitor();
}
For more docs on the BLDCMotor
and StepperMotor
monitoring see the Monitoring docs.
Step 7. Debugging output
SimpleFOClibrary provides an informative debugging interface that can be enabled by calling SimpleFOCDebug::enable(&Serial)
function. This function enables the debugging output of the library to the Serial
port. This debugging interface will output a more detailed information about:
- driver initialization (during the
driver.init()
function) - current sense initialization (during the
current_sense.init()
function) - motor initialization (during the
motor.init()
function) - motor FOC initialization (during the
motor.initFOC()
function)
The debugging output will provide more information about the state of the motor, driver and current sense during and after the initialization process and will help you to debug your setup. It will also provide MCU architecture specific information such as which Timers and channels are used for PWM generation, which ADC is used for current sensing, did the TIME-ADC synchronisation work, etc.
📢 We strongly advise to use the debugging mode when starting with the SimpleFOClibrary. It provides much more information than the standard monitoring output and can help troubleshooting potentially problems, even MCU architecture specific ones.
Memory usage
Debugging outputs are strings which can take a considerable amount of memory space, so it's not recommended to use it in the final application.
Debugging output is disabled by default and can be enabled by calling the SimpleFOCDebug::enable(&Serial)
function before any of the driver
, sensor
, current_sense
or motor
initalisation (init
calls). Preferably put the SimpleFOCDebug::enable(&Serial)
function call at the beginning of the setup()
function.
#include <SimpleFOC.h>
// instantiate motor
// instantiate driver
// instantiate senor
void setup() {
// init the serial port
// enable the debugging output
SimpleFOCDebug::enable(&Serial);
// init sensor
// link motor and sensor
// init driver
// link motor and driver
// link driver and the current sense
// init current sense
// link motor and current sense
// enable monitoring
// configure motor
// init motor
// init current sense
// align encoder and start FOC
}
void loop() {
// FOC execution
// motion control loop
// monitor variables
}
For more docs on the debugging capabilities of the SimpleFOClibrary see the Debugging docs.
Step 8. Commander Interface
Finally, in order to configure the control algorithm, set the target values and get the state variables in the user-friendly way, (not just dumping as when using motor.monitor()
) SimpleFOClibrary provides you with a g-code like communication interface in form of the Commander
class.
Full motor commander Only motor target value Motion control target + Led control
The following code is one basic implementations of the full communication interface with the user:
#include <SimpleFOC.h>
// instantiate motor
// instantiate senor
//instantiate commander
Commander commander = Commander(Serial);
void doMotor(char* cmd){commander.motor(&motor, cmd);}
void setup() {
// init the serial port
// enable the debugging output
// init sensor
// link motor and sensor
// init driver
// link motor and driver
// link driver and the current sense
// init current sense
// link motor and current sense
// enable monitoring
// subscribe motor to the commands
commander.add('M',doMotor,"motor");
// init motor
// init current sense
// align encoder and start FOC
}
void loop() {
// FOC execution
// motion control loop
// monitor variables
// read user commands
commander.run();
}
For full documentation of the setup and all configuration parameters please visit the Communication docs.
Step 9. Getting started step by step guide
Now that you are familiar with the structure of the SimpleFOClibrary code you can finally start writing your own applications. In order to make this step less complicated, we have provided you a detailed step by step guide. Make sure to go through our step by step getting started guide when dealing with the library for the first time.
🎨 Full Arduino code of the example
Above, you have learned about all the parts of the Arduino program and what they are used for. Here is the full code example with some additional configuration. Please go through the code to better understand how to integrate all previously introduced parts into one. This is the code of the library example motor_full_control_serial_examples/magnetic_sensor/full_control_serial.ino
.
#include <SimpleFOC.h>
// magnetic sensor instance - SPI
MagneticSensorSPI sensor = MagneticSensorSPI(AS5147_SPI, 10);
// BLDC motor & driver instance
BLDCMotor motor = BLDCMotor(11);
BLDCDriver3PWM driver = BLDCDriver3PWM(9, 5, 6, 8);
// commander interface
Commander command = Commander(Serial);
void onMotor(char* cmd){ command.motor(&motor, cmd); }
void setup() {
// monitoring port
Serial.begin(115200);
// enable the debugging output
SimpleFOCDebug::enable(&Serial);
// initialise magnetic sensor hardware
sensor.init();
// link the motor to the sensor
motor.linkSensor(&sensor);
// driver config
// power supply voltage [V]
driver.voltage_power_supply = 12;
driver.init();
// link driver
motor.linkDriver(&driver);
// set control loop type to be used
motor.controller = MotionControlType::torque;
// contoller configuration based on the control type
motor.PID_velocity.P = 0.2;
motor.PID_velocity.I = 20;
motor.PID_velocity.D = 0;
// default voltage_power_supply
motor.voltage_limit = 12;
// velocity low pass filtering time constant
motor.LPF_velocity.Tf = 0.01;
// angle loop controller
motor.P_angle.P = 20;
// angle loop velocity limit
motor.velocity_limit = 50;
// use monitoring with serial for motor init
// comment out if not needed
motor.useMonitoring(Serial);
// initialise motor
motor.init();
// align encoder and start FOC
motor.initFOC();
// set the inital target value
motor.target = 2;
// define the motor id
command.add('A', onMotor, "motor");
// Run user commands to configure and the motor (find the full command list in docs.simplefoc.com)
Serial.println(F("Motor commands sketch | Initial motion control > torque/voltage : target 2V."));
_delay(1000);
}
void loop() {
// iterative setting of the FOC phase voltage
motor.loopFOC();
// iterative function setting the outter loop target
// velocity, position or voltage
// if target not set in parameter uses motor.target variable
motor.move();
// user communication
command.run();
}
Library source code
If you are interested in extending and adapting the SimpleFOClibrary source code you can find full documentation in the library source docs